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SUMMARY

The aim of the present study is to investigate, by numerical simulation, the three-dimensional turbulent
flow field around square and circular piers. The numerical model employs a finite volume method based
on MacCormack’s explicit predictor–corrector scheme to solve weakly compressible hydrodynamic
equations for turbulent flow. Computed results are compared with Dargahi’s experimental measurements
to assess the validity of the proposed model. Very good agreements are obtained. The results of flow
simulation indicate that near the upstream face of the pier there exists a downflow, which joins the
separated flow to form the horseshoe vortex stretched around the pier. This horseshoe vortex interacts
with the wake vortex to create the upflow behind the pier. These phenomena appear to be very important
to the mechanism of scouring around the pier. In general, the flow patterns for the square and circular
piers are similar. However, the strengths of the downflow and horseshoe vortex are greater in the case of
the square pier. The position of the horseshoe vortex around the circular pier is closer to the front face
than that around the square pier. In the meantime, the domain of the wake flow in the case of the square
pier is greater than that in the case of the circular one. Copyright © 2000 John Wiley & Sons, Ltd.

KEY WORDS: circular pier; downflow; horseshoe vortex; MacCormack’s predictor–corrector scheme;
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1. INTRODUCTION

Scouring is an important phenomenon in river mechanics. It generally takes place in alluvial
channels, and around man-made structures, such as bridge piers and spur dikes. The latter
normally is classified as local scour.
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The flow of water around a pier on a channel bed is essentially three-dimensional and
turbulent. This type of flow has many different aspects, which interact in a very complicated
manner arising from the presence of the boundary layer in the approaching flow with the
adverse pressure gradient set up by the pier, and resulting in a horseshoe vortex that occurs
around the pier. In addition, there exist a downflow in the front side of the pier, a bow wave
on the upstream free surface near the pier, and a wake vortex shedding in the downstream
region behind the pier. The flow field is even more complex in the process of scouring. Even
though a vast amount of experimental work on the problem of local scour around bridge piers
(Breusers et al. [1], Ettema [2], Raudkivi and Ettema [3], Raudkivi [4], Melville and Sutherland
[5]) exists, the three-dimensional turbulent flow field in this case is so complex that an accurate
mathematical model is not yet available at this time.

Olsen and Melaaen [6] reported some results of a three-dimensional numerical computation
of the flow and scour around a pier. The primary focus of their work was to propose a steady
model for a particular case of very shallow water depth relative to the width of pier and,
therefore, the results did not contain most of the complex features that are typical under
general conditions. Furthermore, they only reported the downflow and the contraction flow
near the cylinder, but the horseshoe vortex and the wake vortex were not well simulated.

Richardson and Panchang [7] applied a computational fluid dynamic (CFD) commercial
code (FLOW-3D) to study the flow occurring at the base of a circular pier within a scour hole.
However, in their study the equilibrium and the intermediate scour holes are assumed to be
sections of a cone. Olsen and Kjellesvig [8] solved the Reynolds equations with the k–o

turbulence model to estimate the maximum local scour depth around a circular pier, but their
model only has first-order accuracy.

In most of the past studies, emphases have been placed upon the formulation of scour depth
relations rather than the mechanism of scouring. The mechanism ought to be investigated in
terms of the flow field and its significance in the process of scouring. The current authors have
developed a three-dimensional transient flow model and a two-dimensional scour model for
the investigation of the turbulent flow field and scouring around bridge piers (Yen et al. [9],
Tseng [10]). By using such models, the flow field characteristics and the process of scouring
around a square pier have been studied (Yen et al. [11]). The objective of the present study is
to investigate, by numerical simulation, the pattern of the vortex system around the pier and
the effect of pier shape, namely square and circular, on flow characteristics. The numerical
model employs a finite volume method based on MacCormack’s explicit predictor–corrector
scheme to solve weakly compressible hydrodynamic equations, in which turbulent shear stress
is represented by Smagorinsky’s sub-grid scale turbulence model [12].

The contents of this paper are organized as follows. The numerical techniques employed to
solve the three-dimensional transient weakly compressible hydrodynamic flow equations are
presented first. Subsequently, the computation of flow around the circular pier is given to
validate the proposed model using Dargahi’s experimental data [13]. Then, the flow patterns
for the square and circular piers are compared, which are also explored for an extension to
describe the mechanism of scouring. Finally, the overall principal conclusions drawn from the
study are summarized and presented in the last section.

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 34: 207–227
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2. NUMERICAL METHOD

2.1. Go6erning equations

For a weakly compressible hydrodynamic flow [14,15] in which the Mach number is very
small, the equation of state may be represented by

p−p0=a0
2(r−r0) (1)

where p is the pressure, a is the speed of sound, r is the density of fluid, and the subscript 0
refers to the reference condition. By substituting Equation (1) into the continuity and
Navier–Stokes equations, one can obtain
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2. T represents the transpose of the matrix; u, 6, and w are the x, y, and z

components of velocity respectively; x, y, and z are the longitudinal, transverse, and vertical
co-ordinates respectively; txx, txy, txz, . . . represent the shear stress components; Cp is the
pressure coefficient; and M is the Mach number. Since M�1 for the present study, the
coefficient a is set equal to 1.

2.2. LES turbulence model

For turbulent flow, the shear stress tij is expressed as

tij= (tij)l+ (tij)t (3)
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where subscripts l and t stand for the laminar and turbulent parts respectively. The indices
i=1, 2, 3 and j=1, 2, 3. The cell-averaged sub-grid scale (SGS) turbulence model due to
Smagorinsky [12] is adopted for (tij)t as follows:
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(4)

and

K= (C9S)2(2SijSij)1/2 (5)

in which C=CS [1−exp(−z+/26)]; z+ =zu*/6, where z is the distance from the center of the
cell adjoining the bed, u* is the shear velocity, 6 is the kinematic viscosity of fluid; CS is the
SGS coefficient; 9S is the grid size; and Sij= ((ui/(xj+(uj/(xi)/2 is the strain rate.

2.3. Boundary conditions

For the governing equations in the present study, a complete specification of the conditions is
needed at all boundaries of the solution domain. At the cell adjoining the bed and on the
surface of the pier, the partial-slip condition [16] is used to replace the no-slip condition at the
solid boundary. A logarithmic velocity profile is prescribed at the upstream boundary and the
Neumann condition for velocity at the other boundaries is imposed. The Neumann condition
for pressure is employed at all the boundaries but a prescribed pressure value is given at the
downstream boundary. The free surface is modeled as a rigid-lid surface employing full-slip
condition, assuming that there is no significant friction. The advantage of this assumption is
that it does not require a vast amount of CPU time as free surface model [10] and it is an
acceptable approximation for the case of relative large water depth considered herein.

2.4. Numerical scheme

The system represented by Equation (1) is integrated by a finite volume technique on each of
the cells covering the whole domain, by invoking the mean value theorem and divergence
theorem, to give
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where H=Eib +Fjb +Gkb , Um represents a mean quantity referred to the center of an element of
volume V, and n is the normal vector on the surface G of the volume. Here ib , jb , and kb are the
unit vectors in the x-, y-, and z-directions respectively.

Equation (6) can now be discretized provided that the surface integral is approximated by
the sum over the six sides of a numerical flux in the following way:
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where sr are respectively the surface area vectors at the six surfaces that enclose the volume V.
For the temporal integral, MacCormack’s [17] explicit predictor–corrector scheme is used as
follows:

predictor step:
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where � and �� denote the predicted and corrected values ; H r
−, Hr, and H r

+ correspond to
the flux vectors at the centers of the upstream, mid-stream, and downstream volumes
respectively; s r

− and sr denote the surface area vectors at the upstream and downstream sides
of the mid-stream volume. In Equation (8) the predictor step is backward in space. In
Equation (9) the corrector step is forward in space. MacCormack [17] also showed that the
two-step scheme is of second-order accuracy in time and in space. Owing to the fact that the
MacCormack scheme can be either backward or forward in both predictor and corrector steps,
eight different combinations can be found for three-dimensional problems. In this study, it is
arranged to rotate among the eight possibilities in the computations, in order to avoid bias
generated by an eventual accumulation of errors [18].

The solution at the next time level becomes
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3. MODEL VALIDATION

For verification of the numerical model, the flow and sediment conditions employed in the
simulation are the same as those in the experiments for a circular pier by Dargahi [13]. They
are: u*/u*c =0.85; h0/D=1.33; D/d50=416.67; u0=0.26 m s−1; and D=0.15 m. Here, u* is
the bed shear velocity; u*c is the critical bed shear velocity for incipient motion of the sediment
size d50; h0 is the inflow water depth; u0 is the average velocity of inflow; and D is the pier
diameter. The Reynolds number based on the cylinder diameter and the mean approach
velocity is ReD=39000.

The computational domain is 12.5D×7D×1.33D (corresponding to length×width×
depth). Several mesh sizes were tried to test the accuracy of the numerical scheme and search
for an accurate and economical grid system. Finally it was found that a relatively coarse mesh
of 76×39×18 cells, as shown in Figure 1, was good enough to resolve the flow field without
causing a significant numerical error. The grid system was generated by a Poisson grid
generator as described by Tseng [10].

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 34: 207–227
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Figure 1. Grid system for circular pier.

By using the proposed method, the simulation has been carried out for the turbulent flow
field around a circular pier on a rigid flat bed. Shown in Figure 2 are the variations of the drag
coefficient CD and the lift coefficient CL obtained from simulation results. The mean CD value

Figure 2. Variations of CD and CL.

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 34: 207–227
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is 1.155, which is very close to the 1.15 of Dargahi’s experiment and the mean CL value
vanishes. The shedding frequency of the wake vortex is approximately 0.34 Hz by spectrum
analysis of the data in Figure 2. This is very close to the 0.32 Hz of Dargahi’s experiment.

Shown in Figure 3 are the simulated and measured results of pressure coefficient Cp along
the central vertical line near the upstream face of the pier, at x/D= −0.59. These results imply
that a downflow can be generated due to the vertical pressure gradient, and the position of
maximum downflow velocity is near the bed. The agreement between the simulated and
experimental results is reasonably good in Figure 3 except near the free surface, where the
simulated Cp is higher than the experimental one. This overpredicted pressure distribution may
be due to the rigid-lid approximation, which was employed to replace the free surface. Figure
4 illustrates the variation of near bed (at z/D=0.013) pressure coefficient Cp along the line of
symmetry. A strong adverse pressure gradient in front of the pier can be seen in the figure. In
the region of −1.2Bx/DB−0.9, the Cp distribution exhibits a more or less constant value.
A similar phenomenon also appears in the experimental data in the region of −0.9Bx/DB
−0.7. The existence of this plateau in both simulated and measured results may be attributed
to the effect of the horseshoe vortex, which can induce a low pressure region.

Shown in Figure 5 is the shear stress ratio tb/tm near the bed surface at z/D=0.013. From
the figure one can see that the mean shear stress tm position at station x/D= −2.5 (i.e.,
tb/tm=1), and a reverse flow occurs in the upstream area near the pier (i.e., −1.1Bx/DB
−0.5). The minimum value of tb/tm is reached at the point x/D= −0.7. This reverse flow is
an indication of the phenomenon of horseshoe vortex.

Figure 6 illustrates the intensity of turbulent shear stress fluctuation defined as 
t %b
2/tm near

the bed surface. Here t %b is the fluctuation component of turbulent shear stress. As the pier is

Figure 3. Variation of Cp along the central vertical near the front face of the pier.

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 34: 207–227
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Figure 4. Variation of Cp near the bed along the line of symmetry.

Figure 5. Shear stress ratio tb/tm near the bed surface.

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 34: 207–227
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Figure 6. Intensity of shear stress fluctuation 
t %b
2/tm near the bed surface.

approached, the distribution of the turbulent shear intensity increases until a maximum value
within the reverse flow region. In the region −1.2Bx/DB−0.5, the turbulent intensity is
considerably higher than that in the approaching flow. This circumstance is also an indication
of the phenomenon of horseshoe vortex.

By comparing the simulated results with Dargdhi’s measurements in Figures 2–6, one can
find that the general characteristics of pressure and bed shear in front of the pier are well
depicted by this proposed model. Thus, the model proposed herein has the capability to
simulate three-dimensional flow around piers.

4. FLOW FEATURE COMPARISON

In this section, the patterns of the vortex system around the pier and the effect of pier shape,
namely square and circular, on flow characteristics are investigated by numerical simulation
using the proposed model. The computational domain is 12.5b×7b×3b (corresponding to
length×width×depth) for both square and circular piers, where b (D for circular pier) is the
pier width, with a system of 69×39×29 finite volume cells for the square pier and
76×39×29 for the circular pier. The flow and sediment conditions employed in the
simulation are: Reb=ReD=170400, u*/u*c =0.9, h0/b=3.0, b/d50=126.3, u0=0.71 m s−1,
and b=D=0.24 m.

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 34: 207–227
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4.1. Lift and drag coefficients

The variations of the drag coefficient CD and the lift coefficient CL are shown in Figures 7 and
8 for square and circular piers respectively. The analysis of the histogram of CL reveals that the
Strouhal number is approximately 0.11 for the square pier and 0.21 for the circular pier. These
values are quite close to those obtained by other investigators (Durao et al. [19], Gowda [20],
Song and Yuan [15]), and therefore are acceptable. Obviously, the difference in Strouhal
number indicates that the shedding frequency of wake vortex for the circular pier is higher
than that of the square one. The drag coefficient CD in the case of the circular pier is smaller
than that of the square one, clearly indicating that the resistance to flow is less in the case of
the circular pier. In the meantime, the amplitude of variation in CL for the case of the circular
pier is smaller than that for the square one, showing that oscillations in the transverse direction
would be less for the circular pier because the domain of the wake flow in this case is smaller.
Figures 7 and 8 also illustrate that the amplitude of variation in CD is smaller than that in CL

for both square and circular piers, showing that piers would be more vulnerable to vibration
in the transverse direction.

4.2. Pressure coefficient

Shown in Figure 9 is the near bed (at z/b=z/D=0.015) pressure coefficient along the line of
symmetry for both square and circular piers. A strong adverse pressure gradient in front of the

Figure 7. Variations of CD and CL for the square pier.

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 34: 207–227
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Figure 8. Variations of CD and CL for the circular pier.

pier and a large pressure drop in the wake flow can be seen in the figure. The variation of
pressure coefficient in front of the square pier is greater than that of the circular one. Figure
10 illustrates the distribution of the pressure coefficient along the central vertical line near the

Figure 9. Comparison of Cp near the bed along the line of symmetry.

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 34: 207–227
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Figure 10. Comparison of Cp along the central vertical near the front face of the pier.

upstream face of the piers (at x/b=x/D= −0.6). With these results, one can find that the
pressure coefficient varies from 0.966 to 0.513 for the circular pier and from 0.985 to 0.63 for
the square pier. The point of zero pressure gradient locates at z/D=0.07 for the circular pier
and at z/b=0.25 for the square pier.

4.3. Velocity distribution

Shown in Figure 11 is the near bed (at z/b=z/D=0.015) longitudinal velocity distribution
along the line of symmetry for both square and circular piers. The results reveal that a reverse
flow occurs in both upstream and downstream areas near the piers. The former is an indication
of the phenomenon of horseshoe vortex and the latter is a combination of horseshoe vortex
and wake vortex. The location of the maximum reverse velocity is closer to the pier surface in
the case of circular pier. Figure 12 illustrates the downflow velocity distribution along the
central vertical line near the upstream face of the pier (at x/b=x/D= −0.6). The result
reveals that the maximum downflow velocity in the case of square pier is 33 per cent of the
approach velocity, occurring at z/b=0.3. In the case of circular pier, it is 21 per cent of the
approach velocity, occurring at z/D=0.25. By comparing Figures 10 and 12, one can find that
the location of the minimum pressure coefficient is somewhat lower than that of the maximum
downflow velocity for both cases.

Shown in Figure 13(a) and (b) are the mean velocity field (u, w) on the plane of symmetry
of the square and circular piers respectively. The downflow velocity and horseshoe vortex
upstream of the piers are clearly seen, and the upflow pattern behind the pier due to the
interaction of the wake vortex and the horseshoe vortex is also obviously predicted.

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 34: 207–227
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Figure 11. Comparison of u/u0 near the bed along the line of symmetry.

Figure 12. Comparison of w/u0 along the central vertical near the front face of the pier.

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 34: 207–227
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Figure 13. Mean velocity field (u, w) on the plane of symmetry. (a) Square pier, (b) circular pier.

Figure 14(a) and (b) illustrates the mean velocity field (u, 6) near the channel bed (at
z/b=z/D=0.015) for the square and circular piers respectively. The reverse flows in upstream
and downstream areas near the piers are clearly demonstrated. By comparing Figure 14(a) and
(b), one can find that the velocity of reverse flows near the square pier is greater than that near
the circular one, and the domains of the horseshoe vortex and the wake vortex are larger in
the case of the square pier.

4.4. Vorticity distribution

Shown in Figure 15(a) and (b) is the mean vorticity component vx on the lower part of the
y–z plane, where the reverse flow velocity is the maximum in front of the square (at
x/b= −1.25) and the circular (at x/D= −0.86) piers respectively. From these figures, one

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 34: 207–227
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Figure 14. Mean velocity field (u, 6) near the bed surface (at z/b=z/D=0.015). (a) Square pier, (b)
circular pier.

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 34: 207–227
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can find that the domain and strength of the horseshoe vortex of the square pier are greater
than those of the circular one, and they both exhibit the horseshoe vortex form near the
channel bed.

Figure 16(a) and (b) illustrates the mean vorticity component vy on the lower part of the
plane of symmetry of the square and circular piers respectively. The horseshoe vortices

Figure 15. Mean vorticity vx on the y–z plane in front of the piers (at x/b= −1.25, x/D= −0.86).

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 34: 207–227
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Figure 16. Mean vorticity vy on the plane of symmetry.

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 34: 207–227
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upstream of the pier are clearly seen in both cases. By comparing Figure 16(a) and (b),
one can see that the axis of the horseshoe vortex in the front of the circular pier is closer
to the pier than that in the case of the square one because the velocities of downflow and
reverse flow generated by the circular pier are smaller than those generated by the square
one.

4.5. Bed shear stress distribution

Figure 17(a) and (b) illustrates the pattern of stress ratio tb/tc near the bed surface (at
z/b=z/D=0.015) for square and circular piers respectively. From Figure 17(a), one can
find that the maximum values of tb/tc occur at the two front corners. In Figure 17(b), one
can see that the maximum values of tb/tc take place at two locations, approximately 945°
along the surface of the circular pier. In the meantime, the area of high bed shear stress
(tb/tc]1) in the case of the square pier is larger than that of the circular one.

4.6. Scouring mechanism

From the simulated results presented above, an insight into the mechanism of scouring is
gained in terms of the flow field and its significance in the process of scouring. Generally
speaking, the results of the numerical simulation indicate that the main features of the flow
around the pier are the complex three-dimensional turbulent flow near the upstream face of
the pier and the periodical vortex shedding in the downstream region. In the region of
reverse flow near the upstream face, the lateral flow velocity is also developed due to the
lateral pressure gradient in the direction normal to the main flow. The downflow in the
front side of the pier, arising from the vertical pressure gradient, joins the reverse and
lateral flow velocities to form the vortex system near the bed, which is stretched around the
pier base like a horseshoe. Therefore, it can be said that the downflow is the key compo-
nent in forming the horseshoe vortex. These phenomena demonstrated by the numerical
simulation are in good agreement with those observed in experiments by other investigators,
such as Raudkivi [5] and Dargahi [13].

From the results shown in Figure 14(a) and (b) and Figure 17(a) and (b), one can infer
that the zones where scouring or deposition tend to occur on initially flat bed can be
estimated by using the criteria of shear stress ratio tb/tc being greater or less than unity. By
comparing Figure 17(a) and (b), one can further infer that the initial scour hole would
occur near the two front corners of the square pier and near the 945° position of the
circular pier, and that the area of the scour hole around the square pier would be greater
than that of the circular one. At the same time, the downflow, which acts like a jet
impinging on the bed, brings additional scouring effect. As the initial scour takes place, one
can expect the bed shear ratio tb/tc to decrease and the strength of downflow to increase.
Consequently, the scouring process may continue for some time until the flow field and
forces acting on sediment particles are greatly modified by the scour hole. Thus, the final
scour is a result of combined action of bed shear and downflow, reflecting the effect of
horseshoe vortex. In other words, the horseshoe vortex is the mechanism responsible for the
scour around the pier as stated by Dargahi [21].

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 34: 207–227
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Figure 17. Pattern of tb/tc near the bed surface (at z/b=z/D=0.015).

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 34: 207–227
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5. CONCLUSIONS

From the results presented above, the following conclusions can be drawn:

1. The flow pattern of the horseshoe vortex around the pier, downflow in the front side of the
pier, and the wake vortex behind the pier are all well simulated by the flow model, which
employs a finite volume method based on MacCormack’s explicit predictor–corrector
scheme to solve weakly compressible hydrodynamic flow equations, together with
Smagorinsky’s SGS turbulence model.

2. The results of the numerical simulation illustrate that the main characteristics of the flow
around the piers are the complex three-dimensional turbulent flow in the upstream area in
front of the pier and the wake flow in the downstream region behind the pier. In the region
of reverse flow near the upstream face, the lateral flow velocity is developed due to the
lateral pressure gradient normal to the main flow direction and the horseshoe vortex
interacts with the wake vortex to create the upflow behind the pier. The downflow near the
front face of the pier joins the upstream reverse flow to form the vortex system near the
bed, which is then stretched around the pier base like a horseshoe. These phenomena
demonstrated by the numerical simulation are in good agreement with those observed in
experiments by other investigators, e.g., Raudkivi [5], Dargahi [13].

3. In general, the flow patterns for square and circular piers are similar. However, the
Strouhal number in the case of the circular pier is larger than the square one, and the
vortex shedding in the wake flow for the circular pier is faster and more unstable than that
for the square one. The drag coefficient in the case of circular pier is smaller than that of
the square one, indicating that the resistance to flow is lower in the case of the circular pier.
In the meantime, the amplitude of variation in lift coefficient in the case of the circular pier
is also smaller than that of the square one, showing that oscillations in the transverse
direction would be less for the circular pier. Besides, the amplitude of variation in the lift
coefficient is larger than that in the drag coefficient for both square and circular piers. This
implies that piers would be more vulnerable to vibration in the transverse direction.

4. From the flow feature comparison, the results also explore that the strength of the
downflow (Figure 12) along a vertical line near the upstream face are greater in the case of
square pier. The domains of the horseshoe vortex and the wake vortex in the case of the
circular pier are smaller than those in the case of the square one (Figure 14). In the
meantime, the position of the horseshoe vortex around the circular pier is closer to the
front face than that around the square pier (Figure 16). In addition, the domain of high
bed shear stress in the case of the square pier is greater than that of the circular one (Figure
17).

5. From the simulated results presented above, an insight into the mechanism of scouring is
gained. Generally speaking, the initial scour hole would occur near the two front corners
of square pier and near the 945° position of the circular pier, and the area of the scour
hole around the square pier would be greater than that around the circular one. At the
same time, the downflow, which acts like a jet impinging on the bed, brings additional
scouring effect. As the initial scour takes place, one can expect the bed shear ratio tb/tc to
decrease and the strength of the downflow to increase. Consequently, the scouring process
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may continue for some time until the flow field and forces acting on sediment particles are
greatly modified by the scour hole. Thus, the final scour is a result of combined action of
bed shear and downflow, reflecting the effect of the horseshoe vortex. In other words, the
horseshoe vortex is the mechanism responsible for the scour around the pier as stated by
Dargahi [21].
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